mir.pe (일반/밝은 화면)
최근 수정 시각 : 2024-01-31 11:00:25

스펙트럼 정리


선형대수학
Linear Algebra
{{{#!wiki style="margin: 0 -10px -5px; min-height: calc(1.5em + 5px)"
{{{#!folding [ 펼치기 · 접기 ]
{{{#!wiki style="margin: -5px -1px -11px"
<colbgcolor=#006ab8> 기본 대상 일차함수 · 벡터 · 행렬 · 선형 변환
대수적 구조 가군(모듈) · 벡터 공간 · 내적 공간 · 노름 공간
선형 연산자 <colbgcolor=#006ab8> 기본 개념 연립방정식( 1차 · 2차) · 행렬곱 · 단위행렬 · 역행렬 크라메르 공식 · 가역행렬 · 전치행렬 · 행렬식( 라플라스 전개) · 주대각합
선형 시스템 기본행연산 기본행렬 · 가우스-조르당 소거법 · 행사다리꼴 · 행렬표현 · 라그랑주 보간법
주요 정리 선형대수학의 기본정리 · 차원 정리 · 가역행렬의 기본정리 · 스펙트럼 정리
기타 제곱근행렬 · 멱등행렬 · 멱영행렬 · 에르미트 행렬 · 야코비 행렬 · 방데르몽드 행렬 · 아다마르 행렬 변환 · 노름(수학)
벡터공간의 분해 상사 · 고유치 문제 · 케일리-해밀턴 정리 · 대각화( 대각행렬) · 삼각화 · 조르당 분해
벡터의 연산 노름 · 거리함수 · 내적 · 외적( 신발끈 공식) · 다중선형형식 · · 크로네커 델타
내적공간 그람-슈미트 과정 · 수반 연산자( 에르미트 내적)
다중선형대수 텐서 · 텐서곱 · 레비치비타 기호 }}}}}}}}}


1. 개요2. 행렬에 대한 스펙트럼 정리3. 함수해석학에서의 스펙트럼 정리4. '스펙트럼' 이름의 유래

1. 개요

spectral theorem
선형변환 [math(T)]의 스펙트럼(spectrum) [math(\sigma(T))]은 [math(T - \lambda I)]가 비가역인 복소수 [math(\lambda)]의 집합으로 정의된다. 보통 선형대수학의 유한차원 벡터공간이면 이는 고유값의 모음과 일치하지만, 무한 차원의 경우 좀더 넓은 의미가 된다. 스펙트럼 정리는 [math(T)]가 특정 형태의 작용소일 때 그 스펙트럼을 결정하는 정리로 여러 가지 버전이 있다.

2. 행렬에 대한 스펙트럼 정리

행렬의 스펙트럼 정리는 정규 연산자(normal operator) [math(T T^* = T^* T )]에 대해 다음을 말해준다.
정규연산자 [math(T)]는 유니터리 대각화가 가능하다. 즉 대각행렬 [math(D)]와 유니터리 행렬 [math(U)]에 대해 [math(T = U D U^*)] 로 쓸 수 있다.

정규연산자의 일종인 다음 연산자들은 이에 추가적인 성질이 붙는다.
에르미트 연산자의 경우 [math(D)]의 원소는 실수이다.
유니터리 연산자의 경우 [math(D)]의 원소는 절대값 1을 가진다.
자기수반 연산자(대칭행렬)의 경우 [math(D,U)]를 모두 실행렬로 놓을 수 있다.

직교 연산자의 경우는 약간 다른 형태로 정리가 성립한다.
직교 연산자는 전체 공간을 상호직교하는 1차원/2차원 불변공간의 직합으로 분해하고, 따라서 직교행렬 [math(U)]가 존재해 [math( U^t T U )]가 1, -1 또는 2*2 회전행렬들로 이루어진 블록 대각행렬이 되게 만들 수 있다.

각각을 참조하고 싶을 때는 '~~~연산자에 대한 스펙트럼 정리' 로 지칭하면 된다. 자세한 증명은 수반 연산자 항목을 참고.

보통 에르미트 행렬, 대칭행렬과 직교행렬 버전이 많이 쓰인다. 대칭행렬 버전은 일반적인 이차식을 대각화하거나 특이값 분해(singular value decomposition)를 설명하는 등 선형대수학의 응용에서 쉴틈없이 활용된다. 직교행렬 버전을 사용하면 행렬식 1의 모든 3차원 직교변환은 한 축을 기준으로 한 회전밖에 없음을 알 수 있다.

3. 함수해석학에서의 스펙트럼 정리

해석학· 미적분학
Analysis · Calculus
{{{#!wiki style="margin: 0 -10px -5px; min-height: calc(1.5em + 5px)"
{{{#!folding [ 펼치기 · 접기 ]
{{{#!wiki style="margin: -5px -1px -11px"
<colbgcolor=#26455A>실수와 복소수 실수( 실직선 · 아르키메데스 성질) · 복소수( 복소평면 · 극형식 · 편각) · 근방 · 유계 · 콤팩트성 · 완비성
함수 함수 · 조각적 정의 · 항등함수 · 역함수 · 멱함수 · 다변수함수( 동차함수 · 음함수) · 다가 함수 · 함수의 그래프 · 좌표계 · 닮은꼴 함수 · 극값 · 볼록/오목 · 증감표
초등함수( 대수함수 · 초월함수 · 로그함수 · 지수함수 · 삼각함수) · 특수함수 · 범함수( 변분법 · 오일러 방정식) · 병리적 함수
극한·연속 함수의 극한 · 수열의 극한 · 연속함수 · ε-δ 논법 · 수렴( 균등수렴) · 발산 · 부정형 · 점근선 · 무한대 · 무한소 · 특이점 · 0.999…=1
중간값 정리 · 최대·최소 정리 · 부동점 정리 · 스털링 근사 · 선형근사( 어림)
수열· 급수 수열( 규칙과 대응) · 급수( 멱급수 · 테일러 급수( /목록) · 조화급수 · 그란디 급수( 라마누잔합) · 망원급수( 부분분수분해)) · 그물
오일러 수열 · 베르누이 수열 · 월리스 곱
단조 수렴 정리 · 슈톨츠-체사로 정리 · 축소구간정리 · 급수의 수렴 판정 · 리만 재배열 정리 · 바젤 문제 · 파울하버의 공식 · 오일러-매클로린 공식 · 콜라츠 추측미해결
미분 미분 · 도함수( 이계도함수 · 도함수 일람) · 곱미분 · 몫미분 · 연쇄 법칙 · 임계점( 변곡점 · 안장점) · 매끄러움
평균값 정리( 롤의 정리) · 테일러 정리 · 역함수 정리 · 다르부 정리 · 로피탈 정리
립시츠 규칙 · 뉴턴-랩슨 방법 · 유율법 · 경사하강법
적분 적분 · 정적분( /예제) · 스틸체스 적분 · 부정적분( 부정적분 일람) · 부분적분( LIATE 법칙 · 도표적분법 · /예제) · 치환적분 · 이상적분( 코시 주요값)
미적분의 기본정리 · 적분의 평균값 정리
리시 방법 · 2학년의 꿈
다변수· 벡터 미적분 편도함수 · 미분형식 · · 중적분( 선적분 · 면적분 · 야코비안) · 야코비 공식
라그랑주 승수법 · 오일러 동차함수 정리 · 선적분의 기본정리 · 스토크스 정리( 발산 정리 · 그린 정리 변분법
미분방정식 미분방정식( /풀이) · 라플라스 변환
측도론 측도 · 가측함수 · 곱측도 · 르베그 적분 · 절대 연속 측도 · 라돈-니코딤 도함수
칸토어 집합 · 비탈리 집합
복소해석 코시-리만 방정식 · 로랑 급수( 주부) · 유수 · 해석적 연속 · 오일러 공식( 오일러 등식 · 드 무아브르 공식) · 리우빌의 정리 · 바이어슈트라스 분해 정리 · 미타그레플레르 정리
함수해석 공간 위상 벡터 공간 · 국소 볼록 공간 · 거리공간 · 프레셰 공간 · 노름공간 · 바나흐 공간 · 내적공간 · 힐베르트 공간 · Lp 공간
작용소 수반 작용소 · 에르미트 작용소 · 정규 작용소 · 유니터리 작용소 · 컴팩트 작용소
대수 C*-대수 · 폰 노이만 대수
정리 한-바나흐 정리 · 스펙트럼 정리 · 베르 범주 정리
이론 디랙 델타 함수( 분포이론)
조화해석 푸리에 해석( 푸리에 변환 · 아다마르 변환)
관련 분야 해석 기하학 · 미분 기하학 · 해석적 정수론( 1의 거듭제곱근 · 가우스 정수 · 아이젠슈타인 정수 · 소수 정리 · 리만 가설미해결) · 확률론( 확률 변수 · 중심극한정리) · 수치해석학 · 카오스 이론 · 분수계 미적분학 · 수리물리학( 양-밀스 질량 간극 가설미해결 · 나비에 스토크스 방정식의 해 존재 및 매끄러움미해결) · 수리경제학( 경제수학) · 공업수학
기타 퍼지 논리 · 합성곱
}}}}}}}}} ||

힐베르트 공간 위에서 역시 수반연산자를 정의할 수 있으므로, 정규연산자, 에르미트 연산자, 유니터리 연산자 등을 모두 정의할 수 있다. 정규연산자 중 컴팩트 연산자(compact operator) [1]에 대해서는 다음이 성립한다.
정규 컴팩트 연산자 [math(T)]는 항상 [math( Tx = \sum_{i=1}^{\infty} \lambda_i \langle x, u_i\rangle u_i )] 로 쓸 수 있다. 여기서 [math( \{u_i\})]는 힐베르트 공간의 직교기저, [math(\{ \lambda_i\} )]는 절대값이 단조감소하고 0으로 수렴하는 복소수 수열이다.
에르미트 컴팩트 연산자의 경우 [math( \lambda_i )]들은 실수이다.

컴팩트 연산자가 아닌 일반적인 연산자(보통 bounded operator라 부른다)와 심지어는 실제로는 연산자도 아닌 unbounded operator에서도 스펙트럼 정리가 있지만, 무한차원에서 도대체 직교대각화가 무엇을 의미하냐를 일반적으로 설명하려면 르벡 적분이니 resolution of identity니 수학과 대학원에서나 볼 수 있는 초고급 개념들이 튀어나온다. 단순히 표현하면 스펙트럼에 대해서는 행렬의 경우와 거의 동일한 내용이 적용된다고 말할 수 있다.

이들은 당연히 함수해석학의 원래 목적인 미분방정식의 풀이에서 사용된다. 예를 들어 스튀름-리우빌 이론(Sturm-Liouville theory)의 2계 미분방정식 [math( -(py')' + qy = f )]은 에르미트 컴팩트 연산자 형태로 바꿔 쓸 수 있다. 위의 스펙트럼 정리를 적용하면 직교기저가 튀어나오고, 마치 푸리에 급수처럼 이들로 [math(f,y)]를 표현해서 문제를 푸는 것이 스튀름-리우빌 이론의 내용.

4. '스펙트럼' 이름의 유래

힐베르트 공간이 나오게 된 양자역학과 관련이 있다. 스펙트럼 중 각 원자가 발생하는 선 스펙트럼은 전자가 가질 수 있는 에너지 준위와 연관된다. 한편 양자역학이 정립되면서 슈뢰딩거 방정식을 풀었을 때 이 에너지 준위는 라플라시안의 고유값으로 튀어나온다는 것이 밝혀졌다. 이 둘을 수학자들이 연관시켜 위의 개념을 작명한 것으로 보통 생각된다. 비유를 하자면 마치 빛을 분해할 때 스펙트럼이 나타나듯이 작용소를 분해해서 나올 수 있는 숫자들로 생각할 수도 있겠다.
실제로 라플라시안은 [math(L^2)] 공간의 에르미트 연산자이므로 위의 스펙트럼 정리를 바로 적용할 수 있고, 사실 수소 원자 모형에서 오비탈을 하나하나 나열할 수 있는 것도 이 스펙트럼 정리의 덕택이다.

[1] 단위원의 이미지의 폐포(closure)가 컴팩트인 연산자