mir.pe (일반/밝은 화면)
최근 수정 시각 : 2023-11-15 05:34:38

고른 다면체


1. 개요2. 분류

1. 개요

uniform polyhedron

고른 다면체는 정다각형을 면으로 가지고 점추이(그 꼭짓점에서 추이적이다. 즉, 어떤 꼭짓점에서 다른 어떤 꼭짓점으로 등거리 맵핑이 있다)인 다면체이다. 모든 꼭짓점은 합동인 것과 같다.

고른 다면체는 (면추이와 변추이일 경우) 정다면체일 수 있고, (변추이이지만 면추이가 아닐 경우) 준정다면체이거나 (변추이도 면추이도 아닌 경우) 반정다면체일 수 있다. 면과 꼭짓점은 볼록할 필요는 없어서, 많은 고른 다면체는 별다면체이다. 다른 75개와 두 가지의 무한한 고른 다면체의 분류가 있다.

2. 분류

다면체
Polyhedron
{{{#!wiki style="margin:0 -10px -5px; min-height:calc(1.5em + 5px)"
{{{#!folding [ 펼치기 · 접기 ]
{{{#!wiki style="margin:-5px -1px -11px"
고른 다면체 정다면체 볼록 정다면체(플라톤 다면체) 정사면체 · 정육면체 · 정팔면체 · 정십이면체 · 정이십면체
오목 정다면체(케플러-푸앵소 다면체) 작은 별모양 십이면체 · 큰 별모양 십이면체 · 큰 십이면체 · 큰 이십면체
준정다면체 오목 준정다면체
아르키메데스 다면체 볼록 준정다면체 육팔면체 · 십이이십면체
반정다면체 깎은 정다면체 깎은 정사면체 · 깎은 정육면체 · 깎은 정팔면체 · 깎은 정십이면체 · 깎은 정이십면체
부풀린 정다면체 마름모육팔면체 · 마름모십이이십면체
다듬은 정다면체 다듬은 육팔면체 · 다듬은 십이이십면체
깎은 준정다면체 깎은 육팔면체 · 깎은 십이이십면체
각기둥
엇각기둥
오목 반정다면체
고르지 않은 다면체 각면이 정다각형인 경우 존슨 다면체
각뿔 삼각뿔 · 사각뿔
쌍각뿔
각뿔대
각면이 정다각형이 아닌 경우
카탈랑 다면체
엇쌍각뿔
지오데식 돔
골드버그 다면체 }}}}}}}}}

고른 다면체의 쌍대다면체는 면추이이고 꼭짓점 도형이 정다각형이고, 일반적으로 (고른) 쌍대다면체와 나란하게 분류된다. 정다면체의 쌍대는 정다면체이고, 아르키메데스의 다면체의 쌍대는 카탈랑의 다면체이다. 고른 다면체의 개념은 높은(낮은) 차원의 도형에 적용되는 고른 다포체의 개념의 특별한 경우이다.

분류