mir.pe (일반/밝은 화면)
최근 수정 시각 : 2024-09-29 15:20:18

증명

수학기초론
Foundations of Mathematics
{{{#!wiki style="margin: 0 -10px -5px; min-height: calc(1.5em + 5px)"
{{{#!folding [ 펼치기 · 접기 ]
{{{#!wiki style="margin: -5px -1px -11px"
다루는 대상과 주요 토픽
수리논리학 논리 · 논증{ 귀납논증 · 연역논증 · 귀추 · 유추} · 공리 및 공준 · 증명{ 증명보조기 · 자동정리증명 · 귀류법 · 수학적 귀납법 · 반증 · 더블 카운팅 · PWW} · 논리함수 · 논리 연산 · 잘 정의됨 · 조건문( 조각적 정의) · 명제 논리( 명제 · 아이버슨 괄호 · · · 대우) · 양상논리 · 술어 논리( 존재성과 유일성) · 형식문법 · 유형 이론 · 모형 이론
집합론 집합( 원소 · 공집합 · 집합족 · 곱집합 · 멱집합) · 관계( 동치관계 · 순서 관계) · 순서쌍( 튜플) · 서수( 하세 다이어그램 · 큰 가산서수) · 수 체계 · ZFC( 선택공리) · 기수( 초한기수) · 절대적 무한 · 모임
범주론 범주 · 함자 · 수반 · 자연 변환 · 모나드 · 쌍대성
계산가능성 이론 계산 · 오토마타 · 튜링 기계 · 바쁜 비버 · 정지 문제 · 재귀함수
정리
드모르간 법칙 · 대각선 논법 · 러셀의 역설 · 거짓말쟁이의 역설 · 뢰벤하임-스콜렘 정리 · 슈뢰더-베른슈타인 정리 · 집합-부분합 정리 · 퍼스의 항진명제 · 굿스타인 정리 · 완전성 정리 · 불완전성 정리( 괴델 부호화) · 힐베르트의 호텔 · 연속체 가설 · 퍼지 논리
기타
예비사항( 약어 및 기호) · 추상화 · 벤 다이어그램 · 수학철학
틀:논리학 · 틀:이산수학 · 틀:이론 컴퓨터 과학 · 철학 관련 정보 · 논리학 관련 정보 · 수학 관련 정보 }}}}}}}}}



<colbgcolor=#000> 과학 연구 · 실험
Scientific Research · Experiment
{{{#!wiki style="margin: 0 -10px -5px"
{{{#!folding [ 펼치기 · 접기 ]
{{{#!wiki style="margin: -6px -1px -11px"
<colbgcolor=#000><colcolor=#fff><rowcolor=#000,#fff> 배경 과학적 방법
기반 수학( 미적분학 · 선형대수학 · 미분방정식) · 통계학( 수리통계학 · 추론통계학 · 기술통계학)
연구· 탐구 논증( 귀납법 · 연역법 · 유추(내삽법 · 외삽법)) · 이론( 법칙 · 공리 · 증명 · 정의 · 근거이론 · 이론적 조망) · 가설 · 복잡계( 창발) · 모형화(수학적 모형화) · 관측 · 자료 수집 · 교차검증 · 오컴의 면도날 · 일반화
연구방법론 합리주의 · 경험주의 · 환원주의 · 복잡계 연구방법론 · 재현성( 연구노트)
통계적 방법 혼동행렬 · 회귀 분석 · 메타 분석 · 주성분 분석 · 추론통계학(모형( 구조방정식) · 통계적 검정 · 인과관계와 상관관계 · 통계의 함정 · 신뢰도와 타당도)
측정· 물리량 물리량( 물리 상수 · 무차원량) · 차원( 차원분석) · 측도 · 단위(단위계( SI 단위계 · 자연 단위계) · 단위 변환) · 계측기구 · 오차( 불확도 · 유효숫자 · 과학적 기수법)
실험 실험설계 · 정성실험과 정량실험 · 실험군과 대조군 · 변인(독립 변인 · 조작 변인 · 종속 변인 · 변인 통제) · 모의 실험( 수치해석) · 맹검법 · 사고실험 · 인체실험 · 임상시험 · 실험 기구
연구윤리 뉘른베르크 강령 · 헬싱키 선언 · 연구투명성 · 연구 동의서 · 연구부정행위 · 표절( 표절검사서비스) · 편향 · 문헌오염 · 자기교정성 · 연구윤리위원회
논문· 과학 공동체 소논문 · 리포트 · 논문제출자격시험 · 연구계획서 · 형식( 초록 · 인용( 양식 · 참고문헌) · 감사의 글) · 저자 · 학회 · 세미나 · 학술대회 · 동료평가 · 지표 · 학술 데이터베이스 · 게재 철회 · 학제간 연구
철학 관련 정보 · 연구방법론 관련 정보 · 수학 관련 정보 · 자연과학 관련 정보 · 물리학 관련 정보 · 통계 관련 정보 · 사회과학 조사연구방법론 }}}}}}}}}

1. 개요2. 자연과학에서의 증명 기법3. 컴퓨터를 이용한 증명4. 법률용어로서의 증명, 소송법상의 증명 방법5. 관련 문서

1. 개요

증명(證明, proof)은 어떤 명제가 참인지, 거짓인지를 논리적으로 풀어내 보여주는 것이다.[1] 다만 수학 기호의 정의(定義)등은 약속이기 때문에, 증명할 수도 없고, 그것을 증명한다는 것 자체가 어폐가 있으므로 주의.

특정한 공리들을 가정하고, 그 가정하에서 어떤 명제가 참이라는 것을 보여주는 것을 가리킨다.(특정한 공리는 별다른 언급이 없으면 체르멜로-프랭켈-선택공리계로 가정한다.) 참고로, 현대 수학에서는 증명이란 것 자체도 수학적으로 정의가 되어있다. 그렇기 때문에 수나 도형처럼 수학적 대상으로 만들어 연구가 가능하다.[2]

일상에서도, 어떤 사람의 발언을 잘못 믿고 의아()해 할때, 그 사람을 설득시키기 위해서나, 자신의 주장을 강하게 보여주기 위해서 쓰기도 한다. 너무 많이 쓰면 사람을 못 믿는 것 같은 인상을 보일 수 있으니 조심하자. 의심이라는 게 기본적으로 좋은 것이 아니니까. 일상생활에서는 유의어인 입증이나 검증보다 익숙한 어감 때문에 자주 쓰인다.

과학에서는 이론을 증명했다는 말은 어지간해서는 쓰지 않는다. 과학적 방법론에서 가설이 맞는지 확인하는 작업은 보통 " 입증"이라고 하며, 수학적 논리적 정합성을 따지는 과정과 실험 혹은 관찰을 통한 가설 연역 과정을 거쳐 이뤄진다. 만약 여기서 참임을 보이면 법칙이나 이론으로 승격된다. 이러는 이유는 과학 방법론에서 '증명'이라 하면, 논리적으로 가능한 모든 경우에 대해 그 가설이 틀릴 가능성이 없음을 밝히는 것을 의미하기 때문이다. 하지만 과학은 경험이 개입하므로 현실적으로 증명이라는 것을 해내는 것은 불가능하다는 것이다. 대신 이론을 논리적, 수학적으로 전개하는 과정에서의 증명은 얼마든지 가능하다. 예를 들어 뉴턴 역학과 라그랑주 역학이 동일한 예측 결과를 준다는 것은 증명이 가능하다.

학부 수학, 대학원 수학에서 직법증명법으로 증명하는 것은 보통 어떤 수학적 개념의 수학적 정의를 갖고오거나 정리를 갖고와서 증명하는 경우가 많다.[3]

2. 자연과학에서의 증명 기법

3. 컴퓨터를 이용한 증명

4. 법률용어로서의 증명, 소송법상의 증명 방법

파일:상세 내용 아이콘.svg   자세한 내용은 증거 문서
번 문단을
부분을
참고하십시오.
소송에서 증명이라 함은 증거를 통해 당사자가 주장하는 사실을 법관으로 하여금 추인케 하는 것을 의미한다. 크게 입증책임이 있는 쪽에서 하는 본증과, 입증책임이 있는 당사자의 상대방 측에서 본증을 반박하는 반증이 있다.

5. 관련 문서



[1] 엄밀히 말하면 참/거짓에 더해서 '참과 거짓을 판별할 수 없음'도 포함된다. 즉, 해당 문제가 증명이 불가능하다는 사실을 보이는 것 역시 엄연한 증명이다. 참과 거짓을 판별할 수 없다는 사실을 어떻게 논리적으로 전개하는지 의문스러울 수도 있지만, 대표적인 방법으로는 해당 명제가 참이라고 가정했을 때에도 모순이 없고 거짓이라 가정했을 때에도 모순이 없다는 것을 보인다면 이는 참과 거짓을 판별할 수 없는 명제가 된다. 이외에도 어떤 명제가 증명이 불가능하다는 사실을 증명하는 방법이 여럿 존재한다. [2] 이것이 극명하게 드러나는 것이 위상수학으로, 정말 별별 것들을 도형삼아 다룬다. [3] 수학에서의 증명은 수학과 학부생이라도 처음에는 외우기도 이해하기도 어렵다 [4] 어떤 명제와 그 명제의 대우는 진리치(참, 거짓)가 같다는 특성을 이용한 증명법 [5] 명제를 반대로 가정하여 결론이 가정과 반대됨을 보여주어 명제가 참임을 증명하는 방법이다. [6] 해당 명제의 반례가 있음을 보여주어 거짓임을 증명하는 방법이다. [7] 예제를 통한 증명 : 간단히 '어떤 수를 두 번 곱한 결과와 두 번 더한 결과가 같을 수 있다'라는 명제가 있는데 찾아보니 그 수가 2 또는 0이더라라고 해서 명제가 참이라고 증명하는 방법. 만일 직접 증명법으로 이 문제를 푼다면 2x=x2 2x = x^2 라고 2차 방정식을 놓고 풀어야 한다. 듣기엔 그래도 실제로 꽤 요긴하게 쓰는 방법이다. 이런 종류의 명제는, '어떤'이라는 말이 들어가서 예시를 하나라도 찾으면 되기 때문이다. 물론 명제가 거짓임을 보일 때도 이용된다(반례). 전설이 된 ' M(67)가 합성수임을 증명하는 것'도 이 수가 두 소수로 나눠 떨어짐을 칠판에 적기만 했을 뿐이었다. [8] 위의 수학적 귀납법 참조

분류