mir.pe (일반/밝은 화면)
최근 수정 시각 : 2024-02-14 13:19:38

실베스터 행렬

실베스터 판정법에서 넘어옴


[[대수학|대수학
Algebra
]]
{{{#!wiki style="margin: 0 -10px -5px; min-height: calc(1.5em + 5px)"
{{{#!folding [ 펼치기 · 접기 ]
{{{#!wiki style="margin: -5px -1px -11px"
이론
기본 대상 연산 · 항등식( 가비의 이 · 곱셈 공식( 통분 · 약분) · 인수분해) · 부등식( 절대부등식) · 방정식( /풀이 · ( 무연근 · 허근 · 비에트의 정리( 근과 계수의 관계) · 제곱근( 이중근호 · 개방법) · 환원 불능) · 부정 · 불능) · 비례식 · 다항식 · 산술( 시계 산술)
수 체계 자연수( 소수) · 정수( 음수) · 유리수 · 실수( 무리수( 대수적 무리수 · 초월수) · 초실수) · 복소수( 허수) · 사원수 · 팔원수 · 대수적 수 · 벡터 공간
다루는 대상과 주요 토픽
대수적 구조
군(group) 대칭군 · 기본군 · 자유군 · 리 군 · 괴물군 · 점군 · 순환군 · 군의 작용 · 동형 정리 · 실로우 정리
환(ring) 아이디얼
체(field) 갈루아 이론 · 분해체
대수 가환대수 · 리 대수 · 불 대수( 크로네커 델타)
마그마· 반군· 모노이드 자유 모노이드 · 가환 모노이드
선형대수학 벡터 · 행렬 · 텐서( 텐서곱) · 벡터 공간( 선형사상) · 가군(module) · 내적 공간( 그람-슈미트 과정 · 수반 연산자)
정리·추측
대수학의 기본정리 · 나머지 정리 · 유클리드 호제법 · 부분분수분해 · PID 위의 유한생성 가군의 기본정리 · 산술·기하 평균 부등식 · 바이어슈트라스 분해 정리 · 호지 추측미해결 · 가환대수에서의 호몰로지 추측미해결
관련 하위 분야
범주론 함자 · 수반 · 자연 변환 · 모나드 · 쌍대성 · 토포스 이론 · 타입 이론
대수 위상수학 연속변형성 · 사슬 복합체 · 호몰로지 대수학( 호몰로지 · 코호몰로지) · mapping class group · 닐센-서스턴 분류
대수기하학 대수다양체 · · 스킴 · 에탈 코호몰로지 · 모티브
대수적 정수론 타원곡선 · 디오판토스 방정식 · 유리근 정리 · 모듈러성 정리
가환대수학 스펙트럼 정리
표현론 실베스터 행렬
기타 및 관련 문서
수학 관련 정보 · 추상화 · 1학년의 꿈 · 노름 · 혼합계산 · 분배법칙 · 교환법칙 · 결합법칙 · 교재 }}}}}}}}}


1. 개요2. 정의3. Resultant
3.1. Resultant와 공통인수3.2. Resultant와 판별식
3.2.1. 예시: 2차 다항식 판별식 유도
3.3. 대수 기하학에서
4. 역사5. 관련 문서

1. 개요

실베스터 행렬(Sylvester matrix)은 두 다항식이 공통인수를 갖는지에 대한 정보를 담고 있는 정사각 행렬이다. 예시에서처럼 n차 방정식의 판별식을 유도해 내는데 사용할수있다.

2. 정의

실베스터 행렬은 두 다항식 f, gk[x]f,\ g\in k[x]([math(k)]는 )에 의해 결정되는 행렬로, 여기서는 Syl(f,g)\mathrm{Syl}(f,g)라고 표기한다.

f(x)=amxm++a1x+a0,  g(x)=bnxn++b1x+b0  (am, bn0)f(x)=a_m x^m+\cdots+a_1 x+a_0, \ \ g(x)=b_n x^n+\cdots+b_1 x+b_0 \ \ (a_m,\ b_n \neq 0)일 때, Syl(f,g)\mathrm{Syl}(f,g)는 다음과 같은 (m+n)×(m+n)(m+n)\times(m+n) 행렬이다.

Syl(f,g)=(ama1a00000ama1a000000ama1a0bnb1b00000bnb1b000000bnb1b0)\mathrm{Syl}(f,g)=\begin{pmatrix}a_m & \cdots & a_1 & a_0 & 0 & 0 & \cdots & 0 \\ 0 & a_m & \cdots & a_1 & a_0 & 0 & \cdots & 0 \\ & & & \vdots & & \\ 0 & 0 & \cdots & 0 & a_m & \cdots & a_1 & a_0 \\ b_n & \cdots & b_1 & b_0 & 0 & 0 & \cdots & 0 \\ 0 & b_n & \cdots & b_1 & b_0 & 0 & \cdots & 0 \\ & & & \vdots & & \\ 0 & 0 & \cdots & 0 & b_n & \cdots & b_1 & b_0 \\ \end{pmatrix}

3. Resultant

실베스터 행렬의 행렬식은 (Sylvester) resultant라고 부르며, Syl(f,g)\mathrm{Syl}(f,g)의 행렬식을 Res(f,g)\mathrm{Res}(f,g)라고 표기한다.

3.1. Resultant와 공통인수

정리 다음은 동치이다.
* Res(f,g)=0\mathrm{Res}(f,g)=0
* ffgg는 공통인수를 갖는다.
[ 증명 아이디어 보기 ]
증명의 대략적인 아이디어는 다음과 같다. 차수가 [math(d)] 이하인 모든 다항식을 모은 [math(d+1)]차원 벡터공간을 [math(P_d)]라고 표기하자. 선형 변환 [math(\delta :\ P_{n-1}\oplus P_{m-1} \rightarrow P_{m+n-1})]을 [math(\delta(A,B)=Af+Bg)]가 되도록 정의한다. 그러면 [math(\delta)]는 다음과 같이 행렬로 표현된다.

[math(A=r_{n-1} x^{n-1}+\cdots +r_1 x + r_0,\ B=s_{m-1} x^{m-1}+\cdots +s_1 x+s_0)]라고 하면,
[math(\delta(A,B)=(r_{n-1}\ \cdots \ r_0 \ \ s_{m-1} \ \cdots \ s_0)\ \mathrm{Syl}(f,g) \begin{pmatrix} x^{m+n} \\ \vdots \\ x \\ 1 \end{pmatrix})]

따라서 [math(\mathrm{Res}(f,g)\neq 0)]은 [math(\delta)]가 전사함수라는 것과 동치이다.[1] 이제 [math(\delta)]가 전사함수라는 것과 [math(Af+Bg=1)]인 [math(A,\ B)]가 존재한다는 것이 동치임을 증명하고, 이것이 [math(f,\ g)]가 공통근을 갖는다는 것과 동치임을 증명하면 된다. 자세한 증명은 Brendan Hassett - Introduction to Algebraic Geometry의 Theorem 5.5 참고. □

대수적으로 닫힌 체에서는 다항식이 모두 일차식들로 인수분해되므로, 공통인수를 갖는 것과 공통근을 갖는 것이 동치이다. 따라서 [math(k)]가 대수적으로 닫힌 체이면 다음이 동치이다.
따름정리 ff가 중근을 가지면 Res(f,f)=0\mathrm{Res}(f,f')=0이다.
이는 [math(f)], [math(f')]가 공통근을 갖는 것과 [math(f)]가 중근을 갖는 것이 동치[2]이기 때문이다. 따라서 [math(k)]가 대수적으로 닫힌 체이면 위 따름정리의 역도 성립한다.

3.2. Resultant와 판별식

정리 [math(f)]의 근을 [math(\alpha_1, \cdots, \alpha_m)], [math(g)]의 근을 [math(\beta_1, \cdots , \beta_n)]이라고 할 때, 다음이 성립한다.
[math(\displaystyle \mathrm{Res}(f,g)=a_m^n b_n^m \prod_{i, j}^{\ } (\alpha_i-\beta_j))]
[ 증명 보기 ]
다음은 Valery Bykov, Alexander Kytmanov, Mark Lazman - Elimination Methods in Polynomial Computer Algebra의 Theorem 6.1에서 소개된 증명이다. 우변은 다음과 같이 쓸 수 있다.

[math(\displaystyle S:=a_m^n b_n^m \prod_{i, j} (\alpha_i-\beta_j) = (-1)^{mn} b_n^m \prod_{j=1}^n (a_m \prod_{i=1}^m (\beta_j-\alpha_i)) = (-1)^{mn} b_n^m \prod_{j=1}^n f(\beta_j),)]
[math(\displaystyle S=a_m^n b_n^m \prod_{i, j} (\alpha_i-\beta_j) = a_m^n \prod_{i=1}^m (b_m \prod_{j=1}^n (\alpha_j-\beta_i)) = a_m^n \prod_{i=1}^m g(\alpha_i))]

다음과 같은 행렬식을 보자.

[math(M:=\begin{vmatrix} \beta_1^{m+n-1} & \beta_2^{m+n-1} & \cdots & \beta_n^{m+n-1} & \alpha_1^{m+n-1} & \alpha_2^{m+n-1} & \cdots & \alpha_m^{m+n-1} \\ \beta_1^{m+n-2} & \beta_2^{m+n-2} & \cdots & \beta_n^{m+n-2} & \alpha_1^{m+n-2} & \alpha_2^{m+n-2} & \cdots & \alpha_m^{m+n-2} \\ & & \vdots & & & & \vdots & \\ \beta_1 & \beta_2 & \cdots & \beta_n & \alpha_1 & \alpha_2 & \cdots & \alpha_m \\ 1 & 1 & \cdots & 1 & 1 & 1 & \cdots & 1 \end{vmatrix})]

이는 Vandermonde 행렬이므로 행렬식은 다음과 같다.

[math(\displaystyle M=\prod_{1\leq i<j \leq n} (\beta_j-\beta_i) \prod_{i=1}^m \prod_{j=1}^n (\beta_j-\alpha_i) \prod_{1\leq i<j \leq m} (\alpha_j-\alpha_i))]

[math(\displaystyle \therefore \ a_m^n b_n^m \ \mathrm{Res}(f,g) \cdot M =\ \mathrm{Res}(f,g) \cdot (-1)^{mn} S \prod_{1\leq i<j \leq n} (\beta_j-\beta_i) \prod_{1\leq i<j \leq m} (\alpha_j-\alpha_i) \ \ \ \ \cdots(1))]

그런데 [math(f(\alpha_i)=0)], [math(g(\beta_j)=0)]이므로 [math(\mathrm{Res}(f,g) \cdot M)]은 아래와 같이 계산될 수 있다.

[math(\displaystyle \mathrm{Res}(f,g) \cdot M = \begin{vmatrix} \beta_1^{n-1} f(\beta_1) & \beta_2^{n-1} f(\beta_2) & \cdots & \beta_n^{n-1} f(\beta_n) & 0 & \cdots & 0 \\ & & \vdots & & & \vdots & \\ \beta_1 f(\beta_1) & \beta_2 f(\beta_2) & \cdots & \beta_n f(\beta_n) & 0 & \cdots & 0 \\ f(\beta_1) & f(\beta_2) & \cdots & f(\beta_n) & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 & \alpha_1^{m-1} g(\alpha_1) & \cdots & \alpha_m^{m-1} g(\alpha_m) \\ 0 & 0 & \cdots & 0 & \alpha_1^{m-2} g(\alpha_1) & \cdots & \alpha_m^{m-2} g(\alpha_m) \\ & & \vdots & & & \vdots & \\ 0 & 0 & \cdots & 0 & g(\alpha_1) & \cdots & g(\alpha_n) \end{vmatrix} \\ = \prod_{j=1}^n f(\beta_j) \prod_{i=1}^m g(\alpha_i) \cdot \begin{vmatrix} \beta_1^{n-1} & \beta_2^{n-1} & \cdots & \beta_n^{n-1} \\ & & \vdots & \\ \beta_1 & \beta_2 & \cdots & \beta_n \\ 1 & 1 & \cdots & 1 \end{vmatrix} \cdot \begin{vmatrix} \alpha_1^{m-1} & \alpha_2^{m-1} & \cdots & \alpha_m^{m-1} \\ & & \vdots & \\ \alpha_1 & \alpha_2 & \cdots & \alpha_m \\ 1 & 1 & \cdots & 1 \end{vmatrix} \\ = \prod_{j=1}^n f(\beta_j) \prod_{i=1}^m g(\alpha_i) \prod_{1\leq i<j \leq n} (\beta_j-\beta_i) \prod_{1\leq i<j \leq m} (\alpha_j-\alpha_i))]

[math(\displaystyle \therefore \ a_m^n b_n^m \ \mathrm{Res}(f,g) \cdot M = S \cdot (-1)^{mn} S \prod_{1\leq i<j \leq n} (\beta_j-\beta_i) \prod_{1\leq i<j \leq m} (\alpha_j-\alpha_i) \ \ \ \ \cdots(2))]

식 [math((1))]과 식 [math((2))]에 의해 [math(\mathrm{Res}(f,g)=S)]이다. ■

이때 [math(\alpha_i)], [math(\beta_j)]는 [math(k)]의 대수적 폐포(algebraic closure)의 원소이다.[3]

위 정리와 판별식의 정의에 의해 resultant와 판별식의 관계를 얻을 수 있다. 또는 아래 식으로 판별식을 정의하기도 한다. 차수가 [math(n)]이고 최고차항이 [math(a_n)]인 다항식 hh의 판별식 [math(D)]는 다음과 같다.

D=(1)n(n1)2an1 Res(h,h) D= (-1)^{n(n-1)\over 2} a_n^{-1} \ \mathrm{Res}(h,h')

이때 판별식도 주어진 체 [math(k)]의 대수적 폐포에서의 근을 이용해 정의한다. 이렇게 정의하더라도 판별식은 [math(k)]의 원소가 되는데, 이는 resultant가 정의에 의해 [math(k)]의 원소가 되기 때문으로 이해할 수 있다.

상술된 따름정리로부터 ff가 중근을 가지면 D=0D=0임을 확인할 수 있다. 당연히 대수적으로 닫힌 체에서는 그 역도 성립한다. 대수적으로 닫힌 체가 아니면 역이 성립하지 않으며, [math((x^2+x+1)^2\in \mathbb R[x])]와 같은 반례가 있다.

다음과 같은 정리에 따라 판별식도 기약다항식(irreducible polynomial)임을 알 수 있다.
정리[4] Resultant는 기약다항식이다.

3.2.1. 예시: 2차 다항식 판별식 유도

다음은 resultant를 이용하여 2차 방정식 판별식 DD를 유도하는 과정이다.

f(x)=ax2+bx+cf(x)=ax^2+bx+c
f(x)=2ax+bf'(x)=2ax+b
Res(f,f)=abc2ab002ab=ab02abb2a00b+c2ab02a \mathrm{Res}(f,f')= \begin{vmatrix} a & b & c \\ 2a & b & 0 \\ 0 & 2a & b \end{vmatrix}= a \begin{vmatrix} b & 0 \\ 2a & b \end{vmatrix} -b \begin{vmatrix} 2a & 0 \\ 0 & b \end{vmatrix} +c \begin{vmatrix} 2a & b \\ 0 & 2a \end{vmatrix}

ab02ab=a(b202a) a \begin{vmatrix} b & 0 \\ 2a & b \end{vmatrix}= a(b^2-0\cdot 2a)
b2a00b=b(2ab02) -b \begin{vmatrix} 2a & 0 \\ 0 & b \end{vmatrix} = -b(2ab-0^2)
c2ab02a=c((2a)20b) c \begin{vmatrix} 2a & b \\ 0 & 2a \end{vmatrix}=c((2a)^2-0\cdot b)
ab02abb2a00b+c2ab02a=a(b202a)b(2ab02)+c((2a)20b)\therefore \;\; a \begin{vmatrix} b & 0 \\ 2a & b \end{vmatrix} -b \begin{vmatrix} 2a & 0 \\ 0 & b \end{vmatrix} +c \begin{vmatrix} 2a & b \\ 0 & 2a \end{vmatrix}= a(b^2-0\cdot 2a) -b(2ab-0^2)+c((2a)^2-0\cdot b)
=ab202a22ab2+02b+c4a20bc = ab^2-0\cdot 2a^2 -2ab^2+0^2b+c\cdot 4a^2-0\cdot bc
=ab22ab2+c4a2 = ab^2-2ab^2+c\cdot 4a^2
Res(f,f)=ab2+4a2c\therefore \mathrm{Res}(f,f') =-ab^2+4a^2 c
D=(1)n(n1)2an1Res(f,f) D= (-1)^{n(n-1)\over 2} a_n^{-1} \mathrm{Res}(f,f')
D=(1)n(n1)2an1(ab2+4ca2)\therefore D= (-1)^{n(n-1)\over 2} a_n^{-1} (-ab^2+4ca^2)
=a1(ab2+4ca2)\quad = -a^{-1}(-ab^2+4ca^2)
=(ab2+4ca2)a= {(-ab^2+4ca^2) \over -a}
=b24ca= b^2-4ca
D=b24ca\therefore D= b^2-4ca

3.3. 대수 기하학에서

정리[5] f(x)=amxm+am1xm1++a1x+a0, g(x)=bnxn+bn1xn1++b1x+b0f(x)=a_m x^m+a_{m-1} x^{m-1}+\cdots+a_1 x+a_0, \ g(x)=b_n x^n+b_{n-1} x^{n-1}+\cdots+b_1 x+b_0
I = <f,g>  k[x,a0,,am,b0,,bn]I\ =\ <f,g>\ \subset \ k[x,a_0,\cdots,a_m,b_0,\cdots,b_n]
 Ik[a0,,am,b0,,bn] = <Res(f,g)>\Rightarrow \ I\cap k[a_0,\cdots,a_m,b_0,\cdots,b_n]\ =\ <\mathrm{Res}(f,g)>
이 경우 elimination ideal Ik[a0,,am,b0,,bn]I\cap k[a_0,\cdots,a_m,b_0,\cdots,b_n]은 principal ideal이 되며 그 생성원은 Res(f,g)\mathrm{Res}(f,g)가 된다. 이는 [math(\mathbb Q)]와 같은 체에서 여러 변수, 여러 다항식일 때도 마찬가지로 성립하며,[6] 이 때의 생성원을 multipolynomial resultant라고 한다. 즉 Sylvester resultant는 그 특수한 경우이다.

여기서 계수 a0,,am,b0,,bna_0,\cdots,a_m,b_0,\cdots,b_n를 변수취급 해줬다. 이렇게 계수들을 변수취급해준 뒤 xx와 같은 기존 변수를 소거(elimination)하여 계수들이 만족하는 조건을 알아내는 과정을 implicitization이라고 한다. 여기서는 그 조건이 resultant인 것이다.

4. 역사

제임스 조지프 실베스터(James Joseph Sylvester)[7]가 도입하였다.[8] 좀 더 구체적으로는 제임스 조지프 실베스터가 아서 케일리(Arthur Cayley)와 함께한 행렬연구에서[9] [10] 그의 업적이 알려진 바 있다. [11]

5. 관련 문서


[1] 가역행렬의 기본정리 참고. 이때 [math(\delta)]의 정의역의 원소는 [math(\mathrm{Syl}(f,g))]의 우측에 곱해진 열벡터가 아니라 좌측에 곱해진 행벡터이다. 이 때문인지 일부 저자는 [math(\mathrm{Syl}(f,g))]를 여기서 정의한 것의 전치행렬로 정의하기도 한다. 물론 그러더라도 [math(\mathrm{Res}(f,g))]는 변하지 않는다. [2] 이는 인수정리를 이용하면 쉽게 보일 수 있다. [3] 대수적 폐포에서는 모든 n차 다항식이 중복 포함 n개의 근을 갖는다. [4] 증명은 Brendan Hassett - Introduction to Algebraic Geometry의 Proposition 5.12 참고. [5] 증명은 Brendan Hassett - Introduction to Algebraic Geometry의 Theorem 5.13 참고. [6] 증명은 Mateusz Michałek, Bernd Sturmfels - Invitation to Nonlinear Algebra의 Theorem 4.11 참고. [7] 실베스터-갈라이 정리를 증명한 사람이기도 하다. [8] 월프럼 매스월드, 실베스터 행렬 -https://mathworld.wolfram.com/SylvesterMatrix.html [9] 고등학교 기하와 벡터, 성지출판 ( I\text{I} 일차변환과 행렬) 수학이야기-행렬과 행렬식37p 2017 [10] A Memoir on the Theory of Matrices , Arthur Cayley , Philosophical Transactions of the Royal Society of London, Vol. 148 (1858), pp. 17-37 (21 pages) Published by Royal Society -https://www.jstor.org/stable/108649 [11] L. On Hamilton's quadratic equation and the general unilateral equation in matrices J.J. Sylvester F.R.S. 1884/11/01 Pages 454-458 | Published online: 29 Apr 2009 DOI https://doi.org/10.1080/14786448408627619

분류