mir.pe (일반/밝은 화면)
최근 수정 시각 : 2024-09-05 20:44:54

클라인의 병

<rowcolor=#fff> ' 기하학· 위상수학
'
{{{#!wiki style="margin: 0 -10px -5px; min-height: calc(1.5em + 5px)"
{{{#!folding [ 펼치기 · 접기 ]
{{{#!wiki style="margin: -5px -1px -11px"
평면기하학에 대한 내용은 틀:평면기하학 참고.
기본 대상
공리 유클리드 기하학 · 비유클리드 기하학
도형 기본 도형 평면 · 부피 · 꼬인 위치 · 각기둥 · 각뿔 · 원기둥 · 원뿔 · ( 공 모양) · 전개도 · 겨냥도 · 다면체 ( 정다면체) · 정사영 · 대칭( 선대칭 · 점대칭)
곡면 타원면 · 타원포물면 · 쌍곡포물면 · 원환면
프랙털 도형 시에르핀스키 삼각형 · 시에르핀스키 사각형( 멩거 스펀지) · 망델브로 집합 · 코흐 곡선 · 드래곤 커브
기타 다포체 · 초구 · 준구 · 일각형 · 이각형
다루는 대상과 주요 토픽
대수기하학 대수다양체 · · 스킴 · 에탈 코호몰로지 · 모티브 · 타원곡선
미분기하학 미분다양체 · 측지선 · 곡률( 스칼라 곡률 · 리만-크리스토펠 곡률 텐서 · 리치 텐서) · 열률 · 텐서 · 쌍곡 공간( 쌍곡삼각형 · 푸앵카레 원반) · 타원 공간( 구면삼각형) · 아핀접속
위상수학 위상 공간 유계 · 옹골 집합 · 다양체 · 택시 거리 공간 · 연결 공간 · 위상수학자의 사인곡선
위상도형 사영평면 · 뫼비우스의 띠 · 클라인의 병 · 매듭( /목록)
주요 성질·정리 분리공리 · 우리손 거리화정리( 우리손 보조정리) · 베르 범주 정리
대수적 위상수학 호모토피 · 사슬 복합체 · 호몰로지 이론( 호몰로지 · 코호몰로지) · 사상류 군 · 닐센-서스턴 분류
기타 차원 · 좌표계 · 거리함수 · 그물 · 쾨니히스베르크 다리 건너기 문제 · 사이클로이드
정리·추측
실베스터-갈라이 정리 · 해안선 역설 · 바나흐-타르스키 역설 · 라이데마이스터 변환 · 오일러 지표 · 푸앵카레 정리 · 페르마의 마지막 정리 · 호지 추측미해결 · 버치-스위너턴다이어 추측미해결
분야
논증기하학 · 대수기하학 · 미분기하학 · 해석 기하학 · 매듭이론 · 프랙털 이론 · 정보기하학 · 위상 데이터분석 }}}}}}}}}

파일:external/upload.wikimedia.org/Klein_bottle_translucent.png
1. 개요2. 상세3. 대중매체에서4. 관련 문서

1. 개요

Klein Bottle(Klein's Bottle). 위상수학상의 특이입체. 간단히 말하자면 뫼비우스의 띠 4차원 버전. 클라인 대롱이라고도 한다.

독일의 수학자 펠릭스 클라인(Felix Klein)이 만들었다고 해서 이런 이름이 붙었다. 원래 이름은 클라인의 을 뜻하는 Kleinsche Fläche였다고 하는데, 클라인의 (Kleinsche Flasche)으로 번역자가 잘못 보았다. 그리고 병이라는 오역을 독일어권이 받아들였다.

2. 상세

클라인의 병을 둘로 쪼개면 뫼비우스의 띠 모양이 나타난다. 각 띠의 가장자리가 맞붙은 형태. 뫼비우스의 띠A에서 한 쪽을 한 바퀴 돌고 다른 쪽으로 나올 때 뫼비우스의 띠B로 갈아타고, 뫼비우스의 띠 B에서 또 한 쪽으로 한 바퀴 돌고 다른 쪽으로 나올 때 뫼비우스의 띠A로 갈아타는 식이다.
파일:external/3.bp.blogspot.com/klein.gif
뫼비우스의 띠와 마찬가지로 겉과 속이 일체화된 도형으로, 3차원상에서는 표현의 한계로 뚫고 들어가는 부분이 생기나 실제로는 그렇지 않다고 한다. 위 그림은 단지 보기 쉽게 3차원으로 표현한 것일 뿐이다. 위상수학을 공부하는 수학자라면 지겹게 보게 되는 도형. 2차원 공간의 한계를 3차원 공간에서 해결한 뫼비우스의 띠와 비슷하게, 3차원의 한계를 4차원에서 해결한 초입방체로, 그 구조는 뫼비우스의 띠와 같아 안과 밖이 구분되지 않는다는 점이 특징이다.
파일:attachment/토러스/ab-a-b.png



당연하게도 우리가 사는 3차원에서 클라인의 병을 만드는 것은 불가능하다. 뫼비우스의 띠를 종이에 그릴 때 종이가 꼬아지는 부분은 면이 안 보이게 그리는 것처럼, 이 병을 3차원에서 만들기 위해서는 튜브에 구멍을 뚫어야 하기 때문. 그래서 클라인 병은 입체가 아닌 '초'입체로 분류된다. 그 중에는 겉으로 보이는 모양이 비슷하게 모형을 만든 것도 있지만, 이 모형들은 전부 구멍을 뚫은 탓에 안팎이 구분되므로 엄연히 같지는 않다. 현실에서 제대로 만든 모형은 뼈대만 있는 와이어프레임(wireframe) 모형뿐이다. 간단한 예로 클라인의 병에는 이론적으로 물을 담을 수 없어야 하지만, 우리가 사는 3차원에서 만든 모형은 물을 넣어보면 병 안쪽에 물이 찬다.[1] 당연하게도, 이건 3차원 상에서 보이는 모양만 재현한 거라 그렇다. 뫼비우스의 띠는 3차원상에선 띠를 뚫지 않고 안쪽에서 바깥쪽으로 나갈 수 있지만 2차원 그림으로 그렸을 땐 불가능한 것을 생각해 보자.[2]
4D 클라인 병은 어떻게 생겼나요? - 한글 자막 있음
각종 교육 서적에서는 '안과 밖이 구분되어 있지 않기 때문에 클라인 병에 물을 담을 수 없다'라고 설명하고는 하는 데 뫼비우스의 띠처럼 물이 병의 안쪽면을 타다보면 언젠가는 바깥쪽으로 나갈 수 있기에 틀린 설명은 아니다. 하지만 아무래도 3차원 공간에 사는 입장에서는 최소한 관이나 밑바닥 쪽에서 물이 고일 수 있는 것처럼 보이기 때문에 쉽게 이해가 가지 않는 설명이다. 따라서 앞서 설명했듯이 3차원에서 겉보기에는 겹친 병처럼 보이지만 실제로는 위 영상과 같이 4차원에서는 애초에 겹쳐있지도 않고 무언가를 담을 수도 없는 형상이기에 물을 담을 수 없다라고 이해하는 것이 편하다. 이는 우리가 3차원밖에 보지 못하기에 쉽게 이해하기 어려운 부분이며 초입방체를 직관적으로 받아들이기 어려운 사례 중 하나이다.

3. 대중매체에서

4. 관련 문서


[1] 3분 35초부터 클라인의 병에 물을 넣고 빼내는 과정이 나온다. [2] 엄밀히 말하면 클라인 병을 2차원 면으로 둘러싸여 구성된 3차원 상의 병이나 그릇이라고 한다는 것은, 뫼비우스의 띠를 평면 상에 납작하게 짓눌러 동그라미 안에 6자가 있는 것 같은 모양으로 만들고는, 접힌 부분의 선을 지우면 나머지 부분을 1차원 선으로 둘러싸인 2차원 상의 그릇이라고 할 수 있다는 것과 하등 다를 바 없다. [3] 상위랭크 마법사인 라나 레이미아조차 상상하지 못해서 실제로 만들어서 붙여보는 짓을 했다. 정확히는 교수가 과제로 낸 거라 '안되는걸 시킬리 없다'며 붙들고 있었다. 문제는 이 과제가 클라인의 병을 모르는 상태로 3차원에서는 구현이 불가능하다는 것을 직관적으로 알 수 있는지를 보기 위한 문제라는 것. [4] 고차원에 거주하는 수라나 신의 경우 이걸 무리없이 상상할 수 있고, 초월기를 사용하는 하프들도 가능한 모양이지만 순혈이나 쿼터의 경우는 엄청나게 드물다고 언급된다. [5] 작품 속에서 등장하는 중동 국가들을 모델로 한 가상의 국가 중 하나. [6] 이 때 시시오 레오가 언급한 탈출법은 위상수학적 의미로 해석한 중간값 정리의 일종이다. 클라인 스페이스의 각 지점의 곡률이 급격하게 변하기 때문에, 중간값 정리에 의해 곡률이 통상공간과 일치하는 점이 존재할 수 밖에 없고, 그 점에 억지로 블랙홀급 공간변동을 일으킬 수 있는 두 드라이버의 힘을 최대로 발휘해서 깨버린 것. 작중 용어로는 레프리션 필드와 어레스팅 필드의 최대 곡률이 일치하는 특이쌍곡점이 존재한다라고 언급하는데, 여기서 말하는 레프리션 필드는 확장되려는 힘. 즉 음의 곡률 필드이며, 어레스팅 필드는 수축시키려는 힘. 즉 양의 곡률 필드다. [7] 마법술식이란 마력이 흐르는 그림인데, 그걸 3차원으로 옮기고 또 3차원의 뫼비우스의 띠 같은 이 클라인 병에까지 옮기려 하고 있는 것이다.