최근 수정 시각 : 2023-05-30 07:22:58
1. 개요2. 공식3. 연속 방정식과의 관련성 Probability current
양자역학에서는
불확정성 원리에 의해 입자의 위치나 운동량을 확정적으로 나타낼 수 없는 대신, 위치의
확률 밀도 함수로 나타낼 수 있다. 이때 입자의 시간과 위치에 따른 확률 밀도 함수를 [math( P(x,\,t) )]라 하면, 확률 흐름 밀도 [math( J(x,\,t) )]는 다음과 같은 식을 만족한다.
[math( \displaystyle {\partial P \over \partial t} = - {\partial J \over \partial x} )]
|
즉, 확률 흐름 밀도는 시간에 따른 확률이 변하는 것을 나타낸다. 다만 확률 밀도 함수라는 것은 "입자가 [math( x=a )]와 [math( x=b )] 사이에서 발견될 확률" 같은 형태, 즉
[math( \displaystyle P_{ab} = \int_a^b P(x) \, dx )]
|
와 같은 식만 실제 확률의 값을 가진다. 따라서 확률 밀도 함수 또한 입자가 [math( x=a )]와 [math( x=b )] 사이에서 발견될 확률이 시간에 따라 어떻게 변하는 지를 계산하기 위해 사용된다. 이는 그냥 위 식을 [math( a )]부터 [math( b )]까지 [math( dx )]로 적분하면 된다.
[math( \displaystyle {dP_{ab} \over dt} = J(a,\,t) - J(b,\,t) )]
|
즉 [math( J(a,\,t) - J(b,\,t) )]는 입자가 [math( a )]와 [math( b )] 사이에서 발견될 확률의 변화율을 나타낸다.
입자의
파동함수를 [math( \Psi (x,\,t) )]라고 하면, 확률 밀도 함수는 [math( P(x,\,t) = {| \Psi |}^2 )]이다. 이때 1차원의 경우 확률 흐름 밀도 [math( J )]는 다음과 같이 [math( \Psi )]에 대한 식으로 나타낼 수 있다.
[math( \displaystyle J(x,\,t) = - {{i \hbar} \over {2m}} \left( \Psi^\ast {{\partial \Psi} \over {\partial x}} - {{\partial \Psi^\ast} \over {\partial x}} \Psi \right) )]
|
단, [math(m)]은 입자의
질량이고, [math(\Psi^\ast)]는 [math(\Psi)]의
켤레복소수이다. 또한 3차원에서는 편미분을
그레이디언트로 바꿔서 일반화할 수 있다.
[math( \displaystyle J(x,\,t) = - {{i \hbar} \over {2m}} \left( \Psi^\ast \boldsymbol{ \nabla} \Psi - \Psi \boldsymbol{ \nabla} \Psi^\ast \right) )]
|
3. 연속 방정식과의 관련성
슈뢰딩거 방정식
[math( \displaystyle i\hbar{{\partial \Psi}\over{\partial t}} = - {{\hbar^2} \over {2m}} \boldsymbol{\nabla}^2\Psi + V\Psi )]
|
에 [math(\Psi^\ast)]를 곱하고 슈뢰딩거 방정식의 켤레
[math( \displaystyle -i\hbar{{\partial \Psi^\ast}\over{\partial t}} = - {{\hbar^2} \over {2m}} \boldsymbol{\nabla}^2\Psi^\ast + V\Psi^\ast )]
|
에 [math(\Psi)]를 곱해서 차이를 계산하면
[math( \displaystyle i\hbar{{\partial }\over{\partial t}}(\Psi^\ast \Psi ) = - {{\hbar^2} \over {2m}} (\Psi^\ast \boldsymbol{\nabla}^2 \Psi - \Psi\boldsymbol{\nabla}^2 \Psi^\ast ) )]
|
이때 [math(\rho)]를 확률 [math(|\Psi|^2)]로 생각한다면
[math( \displaystyle {{\partial \rho }\over{\partial t}} = - {{\hbar} \over {2mi}}\boldsymbol{\nabla} \cdot \left(\Psi^\ast \boldsymbol{\nabla} \Psi - \Psi\boldsymbol{\nabla} \Psi^\ast \right) )]
|
연속 방정식은 다음과 같다.
[math(\displaystyle \boldsymbol{\nabla}\cdot \mathbf{J}+\frac{\partial \rho}{\partial t}=0)]
|
위에서 얻은 식과 연속방정식을 비교하면 확률 흐름 밀도는 [math(\mathbf{J})]가 된다. 따라서 확률 흐름 밀도는 마치 어떤 영역에서 확률이 (마치 전류 밀도처럼) 빠져나오는 것이라고 생각할 수 있다.