수학
상수 Mathematical Constants |
|||||
{{{#!wiki style="margin: 0 -10px -5px; min-height: calc(1.5em + 5px)" {{{#!folding [ 펼치기 · 접기 ] {{{#!wiki style="margin: -5px -1px -11px" |
[math(0)] (덧셈의 항등원) |
[math(1)] (곱셈의 항등원) |
[math(sqrt{2})] (최초로 증명된 무리수)[math(^\ast)] |
[math(495)], [math(6174)] ( 카프리카 상수) |
[math(0)],
[math(1)], [math(3435)], [math(438579088)] ( 뮌하우젠 수) |
[math(pi)] (원주율)[math(^{\ast\ast})] |
[math(tau)] (새 원주율)[math(^{\ast\ast})] |
[math(e)] (자연로그의 밑)[math(^{\ast\ast})] |
[math(varphi)] (황금비)[math(^\ast)] |
[math(i)] (허수단위) |
|
[math(G)] (카탈랑 상수)[math(^{\ast?})] |
[math(zeta(3))] (아페리 상수)[math(^{\ast\ast?})] |
[math({rm Si}(pi))] (윌브레이엄-기브스 상수)[math(^{\ast?})] |
[math(gamma)] (오일러-마스케로니 상수)[math(^{\ast?})] |
[math(gamma_n)] (스틸체스 상수)[math(^{\ast?})] |
|
[math(Omega)] (오메가 상수)[math(^{\ast\ast})] |
[math(2^{sqrt{2}})] (겔폰트-슈나이더 상수)[math(^{\ast\ast})] |
[math(C_n,)] (챔퍼나운 상수)[math(^{\ast\ast})] |
[math(A,)] (글레이셔-킨켈린 상수)[math(^{\ast?})] |
[math(A_k,)] (벤더스키-아담칙 상수)[math(^{\ast?})] |
|
[math(-e, {rm Ei}(-1))] (곰페르츠 상수)[math(^{\ast?})] |
[math(mu)] (라마누잔-졸트너 상수)[math(^{\ast?})] |
[math(B_{2})], [math(B_{4})] (브룬 상수)[math(^{\ast?})] |
[math(rho)] (플라스틱 상수)[math(^\ast)] |
[math(delta)], [math(alpha)] (파이겐바움 상수)[math(^{\ast?})] |
|
[math(G)] (란다우 상수)[math(^{\ast?})] |
[math(C_A)] (아르틴 상수)[math(^{\ast?})] |
||||
[math(^{\ast?})] 유리수인지 무리수인지 밝혀지지 않음 |
1. 개요
Champernowne constant · Champernowne 常 數소수 전개가 1부터 시작하여 연속적인 정수를 쭉 이어 만든 실수이다. 규칙이 분명히 있긴 하지만, 이는 진법 상의 규칙일 뿐 소수점 아래의 자릿수가 반복되는 규칙이 아니기 때문에 엄연한 무리수이며[1], 초월수이기도 하다.[2]
그 값은 10진수 기준 0.123456789101112131415161718192021...으로 알려져있다.[3]
10진수 외에도 각 진법에 대응하는 챔퍼나운 상수가 있으며, 파생형으로 0.1+0.02+0.003+0.0004+0.00005+0.000006+0.0000007+0.00000008+0.000000009+0.000000001+0.0000000011...(10진수), 0.1+0.10+0.011+0.0100+0.00101+0.000110+0.0000111+0.00001000+0.000001001+0.0000001010+0.00000001011+0.000000001100+0.0000000001101+0.00000000001110+0.000000000001111+0.0000000000010000...(2진수)처럼 받아올림을 하는 것도 있는데 이들 역시 초월수이다. 또한 무한대로 발산하면서 각 진법에 대응하는 함수도 있는데 예를 들어 N(1)=1, N(2)=22, N(3)=333, N(10)=11111111110인 식이다. 즉 N(n)은 10진법과 대응하자면 n+(n*10)+(n*100)+n(n*1000)... 식의 덧셈을 n번 반복하는 것이다.
챔퍼나운 상수는 정규수임이 증명되어 있다.
2. 상세
챔퍼나운 수는 다음과 같은 무한급수로 정확하게 나타낼 수 있다.[math(\displaystyle C_{10}=\sum_{n=1}^\infty\sum_{k=10^{n-1}}^{10^n-1}\frac k{10^{n(k-10^{n-1}+1)+9\displaystyle \sum\limits_{l=1}^{n-1}10^{l-1}l}} )]
3. 연분수 전개
챔퍼나운 상수를 연분수로 전개하여, 근사치가 되는 유리수를 얻을 수 있는데 그중 하나는 아래와 같다.[math(\dfrac{60499999499}{490050000000} = 0.123456789\dot{1}01112\cdots9697990001020304050607080\dot{9})] |
이 유리수를 십진 전개하면 아래와 같다.
0.12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697990001020304050607080910111213141516171819202122232425262728293031323334...
1부터 97까지 총 소수점 186자리 까지 챔퍼나운 상수와 같다.
[1]
"이렇게 발견하기 쉬운데 최초로 증명된 무리수겠지"는 맞는 말이다.
√2는 발견된 무리수로는 최초가 아니다. 물론 이쪽은 무리수인 지 몰랐던 수라는 건 감안해야 한다.
[2]
챔퍼나운 상수가 초월수라는 사실은 커트 멜러가 증명했다.
[3]
0.1234567900111213141516171821021...처럼 정수의 자릿수가 늘어날 때마다 그 수만큼(10이면 해당 자리의 10만큼, 100이면 100만큼) 받아올림으로 커지거나 혹은 0.1+0.02+0.003+0.0004+0.00005+0.000006+0.0000007+0.00000008+0.000000009+0.000000001+0.0000000011... 식의 덧셈에서는 적은 진법의 경우 오히려 무한대가 되어버린다. 게다가 어중간하게 큰 진법은 유리수가 되거나 1이 될 수도 있다. 대신 충분히 큰 진법의 경우 무리수가 되는 것이다. 2진법 기준 챔퍼나운 상수는 0.1101110010111011110001001101010111100110111101111100001... 즉 0.8622283935546875...이다. 받아올림을 한다면 2진법 기준으로는 0.1+0.10+0.011+0.0100+0.00101+0.000110+0.0000111+0.00001000+0.000001001+0.0000001010+0.00000001011+0.000000001100+0.0000000001101+0.00000000001110+0.000000000001111+0.0000000000010000... 즉 10.000010011100111... 10진법 정수 2를 넘는 2.03826904296875... 정도의 값이 되는 것이다.