[clearfix]
1. 개요
수리통계학에서 Kullback-Leibler Divergence(상대 엔트로피; relative entropy) [math(D_{\mathrm{KL}}(P||Q))]은 통계적 거리이다 영문 위키. 첫번째 확률 분포 Q가 두번째 확률분포 P와 어떻게 다른지에 대한 척도이다. P와 Q의 발산에 대한 간단한 해석은, 실제 분포가 P이지만 Q를 모델로 사용할 때 예상되는 서프라이즈(surprise) 이다. KL divergence는 일반적인 의미에서 거리(distance)이긴 하지만, (피타고라스 정리가 성립하는) 친숙한 유형의 거리(distance)인 메트릭(metric)은 아니다. 이는 두 분포 [math(P,Q)]에서 비대칭적이며, 삼각부등식을 만족하지 않기 때문이다. 대신 정보기하학의 관점에서 볼때 이것은 제곱 거리의 일반화이며, 특정 종류의 분포(특히 지수족, exponential family)의 경우, (제곱 거리에 적용되는)일반화된 피타고라스 정리를 만족시킨다.간단한 경우, 상대 엔트로피값 0은 문제의 두 분포가 동일한 양의 정보를 가지고 있음을 나타낸다. KL 다이버전스는 정보 시스템의 상대적(섀넌) 엔트로피를 특성화(characterize)하고, 연속 시계열의 무작위성, 추론의 통계 모델을 비교할 때 정보 이득과 같은 다양한 응용 분야를 가지고 있다; 그리고 응용통계학, 유체역학, 신경과학 및 생물정보학과 같은 분야에서는 실용적으로 사용되고 있다.
두 확률분포 [math(P,Q)]를 고려하자. 일반적으로 [math(P)]는 데이터나 관측값 혹은 계산된 확률분포를 나타내고, [math(Q)]는 이론, 모델, 혹은 [math(P)]의 근사적인 분포를 나타낸다. 이 때 KL divergence는 샘플 P를
2. 정의
2.1. 이산분포의 경우
이산적인 변수를 가진 확률분포 [math(P,Q)]가 동일한 확률공간 [math(X)]에서 정의될때 [math(Q)]에서 [math(P)]로 가는 상대 엔트로피(KL divergence)는 다음과 같이 정의된다:
[math(D_{\mathrm{KL}}(P||Q) = \displaystyle\sum_{x} P(x)\log\frac{P(x)}{Q(x)})]
이때 상대 엔트로피는 [math(Q(x))]가 0으로 갈때 [math(P(x))]도 0으로 갈 때만 정의될 수 있다.
2.2. 연속분포의 경우
연속변수를 가진 확률분포 [math(P,Q)]에 대한 상대 엔트로피는 합을 적분으로 대체해서 다음과 같이 정의된다 :
[math(D_{\mathrm{KL}}(P||Q) = \displaystyle\int P(x)\log\frac{P(x)}{Q(x)}dx)]