1. 개요
Maxwell stress tensor맥스웰 변형 텐서 또는 맥스웰 스트레스 텐서는 물질 외부에서 작용하는 전자기력에 의해 물질이 받는 변형력을 2차 텐서로 간단하게 나타낸 것이다. 쉽게 말해서 물체 외부의 전자기장과 물체가 받는 응력 즉, 역학적 모멘텀(momentum)의 상관관계를 나타내었다 할 수 있다.
어떤 물체의 내부에 전하와 전류밀도가 존재한다면 당연히 외부의 전자기장에 의해서 힘을 받게 될 것이다. 허나, 물질의 형태나 전자기장의 방향 등에 의해서 그 응력의 크기와 방향은 다 다를 것이다. 따라서 '물질이 어느 방향 전자기장에 의해서 어느 방향으로 얼마만큼 응력을 받는가?'를 표하려면 바로 이 맥스웰 변형 텐서를 사용해야 한다.
2. 유도
전자기장으로 인해 전하밀도와 전류밀도를 가진 물체가 단위 부피당 받는 힘을 로런츠 힘를 사용하면 다음을 얻는다.[math(\displaystyle \mathbf{f} = \rho \mathbf{E} + \mathbf{J} \times \mathbf{B} )]
[math(\mathbf{f})]는 단위 부피 당 받는 힘인 점에 유의한다. [math(\rho)], [math(\mathbf{E})], [math(\mathbf{B})], [math(\mathbf{J})]는 각각 전하 밀도, 전기장, 자기장, 전류 밀도이다.
맥스웰-앙페르 법칙
[math(\displaystyle \boldsymbol{\nabla}\times \mathbf{B}=\mu_{0}\mathbf{J}+\varepsilon_{0} \mu_{0} \frac{\partial \mathbf{E}}{\partial t} )]
과 전기장에 대한 가우스 법칙
[math(\displaystyle \boldsymbol{\nabla} \boldsymbol{\cdot} \mathbf{E}=\frac{\rho}{\varepsilon_{0}} )]
를 사용하면
[math(\displaystyle \begin{aligned} \mathbf{f} &= \varepsilon_{0}(\boldsymbol{\nabla} \boldsymbol{\cdot} \mathbf{E}) \mathbf{E} + \!\left(\frac{1}{\mu_{0}} \boldsymbol{\nabla} \times \mathbf{B}-\varepsilon_{0} \frac{\partial \mathbf{E}}{\partial t} \right) \times \mathbf{B} \\&=\varepsilon_{0}(\boldsymbol{\nabla} \boldsymbol{\cdot} \mathbf{E}) \mathbf{E}+\frac{1}{\mu_{0}}(\boldsymbol{\nabla} \times \mathbf{B}) \times \mathbf{B}-\varepsilon_{0} \frac{\partial \mathbf{E}}{\partial t} \times \mathbf{B} \\&=\varepsilon_{0}(\boldsymbol{\nabla} \boldsymbol{\cdot} \mathbf{E}) \mathbf{E}+\frac{1}{\mu_{0}}\!\left[ (\mathbf{B} \boldsymbol{\cdot} \boldsymbol{\nabla})\mathbf{B}-\frac{1}{2} \boldsymbol{\nabla}B^{2} \right] -\varepsilon_{0} \frac{\partial }{\partial t} (\mathbf{E} \times \mathbf{B})+\varepsilon_{0} \mathbf{E} \times \frac{\partial \mathbf{B}}{\partial t} \end{aligned} )]
패러데이 법칙
[math(\displaystyle \begin{aligned} \boldsymbol{\nabla} \times \mathbf{E}=-\frac{\partial \mathbf{B}}{\partial t} \end{aligned} )]
에서
[math(\displaystyle \begin{aligned} \mathbf{f} &=\varepsilon_{0}(\boldsymbol{\nabla} \boldsymbol{\cdot} \mathbf{E}) \mathbf{E}+\frac{1}{\mu_{0}}\!\left[ (\mathbf{B} \boldsymbol{\cdot} \boldsymbol{\nabla})\mathbf{B}-\frac{1}{2} \boldsymbol{\nabla}B^{2} \right] -\varepsilon_{0} \frac{\partial }{\partial t} (\mathbf{E} \times \mathbf{B})-\varepsilon_{0} \mathbf{E} \times (\boldsymbol{\nabla} \times \mathbf{E}) \\&=\varepsilon_{0} \!\left[ (\boldsymbol{\nabla} \boldsymbol{\cdot} \mathbf{E}) \mathbf{E}+(\mathbf{E}\boldsymbol{\cdot}\boldsymbol{\nabla} ) \mathbf{E}-\frac{1}{2}\boldsymbol{\nabla} E^2\right]+\frac{1}{\mu_{0}}\!\left[ (\boldsymbol{\nabla} \boldsymbol{\cdot} \mathbf{B}) \mathbf{B}+(\mathbf{B}\boldsymbol{\cdot}\boldsymbol{\nabla} ) \mathbf{B}-\frac{1}{2}\boldsymbol{\nabla} B^2\right]-\frac{1}{c^2}\frac{\partial \mathbf{S}}{\partial t} \end{aligned} )]
여기서 자기장에 대한 가우스 법칙 [math(\boldsymbol{\nabla} \boldsymbol{\cdot} \mathbf{B}=0)]과 [math(\varepsilon_{0} \mu_{0}=c^{-2} )], 진공에서 자기장 세기 [math(\mathbf{H}=\mathbf{B}/\mu_{0})]를 썼다. [math(\mathbf{S})]는 포인팅 벡터이다.
각 항은 대칭적으로
[math(\displaystyle \begin{aligned} (\boldsymbol{\nabla} \boldsymbol{\cdot} \mathbf{V}) \mathbf{V}+(\mathbf{V}\boldsymbol{\cdot}\boldsymbol{\nabla} ) \mathbf{V}-\frac{1}{2}\boldsymbol{\nabla} V^2 \end{aligned} )]
가 포함되어 있는데, 성분별로 쓰면
[math(\begin{aligned} \!\left[ (\boldsymbol{\nabla} \boldsymbol{\cdot} \mathbf{V}) \mathbf{V}+(\mathbf{V}\boldsymbol{\cdot}\boldsymbol{\nabla} ) \mathbf{V}-\frac{1}{2}\boldsymbol{\nabla} V^2\right ]_{j} &=\frac{\partial V_{i}}{\partial x_{i}}V_{j}+ V_{i}\frac{\partial V_{j}}{\partial x_{i}}-\frac{1}{2}\frac{\partial V^{2}}{\partial x_{j}} \\&=\frac{\partial }{\partial x_{i}}(V_{i}V_{j})-\frac{1}{2}\frac{\partial x_{i}}{\partial x_{j}}\frac{\partial V^{2}}{\partial x_{i}}\\&=\frac{\partial }{\partial x_{i}}(V_{i}V_{j})-\frac{1}{2}\delta_{ij} \frac{\partial V^{2}}{\partial x_{i}} \\ &=\frac{\partial }{\partial x_{i}}\!\left[V_{i}V_{j}-\frac{1}{2}\delta_{ij}V^{2} \right] \\&=\boldsymbol{\nabla} \boldsymbol{\cdot} V_{ij} \end{aligned})]
[math(\delta_{ij})]는 크로네커 델타이다. 따라서 이 식과 나온 식을 매칭시켜보면, 텐서가 하나 나오는 데, 그것을 맥스웰 변형 텐서라 한다.
[math(\displaystyle \begin{aligned} T_{ij}=\varepsilon_{0}\!\left[E_{i}E_{j}-\frac{1}{2}\delta_{ij}E^{2} \right]+\frac{1}{\mu_{0}}\!\left[B_{i}B_{j}-\frac{1}{2}\delta_{ij}B^{2} \right] \end{aligned} )]
따라서 위 식을 다음과 같이 예쁘게 쓸 수 있다.
[math(\displaystyle \begin{aligned} \mathbf{f} &=\boldsymbol{\nabla} \boldsymbol{\cdot} \pmb{\mathsf{T} } -\frac{1}{c^2}\frac{\partial \mathbf{S}}{\partial t} \end{aligned} )]
3. 전자기장의 운동량
뉴턴 제 2법칙에 따르면 운동량과 힘은 다음과 같은 관계가 있다.[math(\displaystyle \begin{aligned} \mathbf{F}=\mathbf{\dot{p}} \end{aligned} )]
마찬가지로 운동량 밀도 [math(\mathcal{P}={\rm d}\mathbf{p}/{\rm d}V)]를 도입하면
[math(\displaystyle \begin{aligned} \dot{\mathcal{P}} &=\boldsymbol{\nabla} \boldsymbol{\cdot} \pmb{\mathsf{T} } -\frac{1}{c^2}\frac{\partial \mathbf{S}}{\partial t} \end{aligned} )]
부피 적분을 하면
[math(\displaystyle \begin{aligned} \mathbf{\dot{p}} &=\iiint_{V} \boldsymbol{\nabla} \boldsymbol{\cdot} \pmb{\mathsf{T} }\,{\rm d}V -\iiint_{V}\frac{1}{c^2}\frac{\partial \mathbf{S}}{\partial t}\,{\rm d}V \\ &=\oiint_{S} \pmb{\mathsf{T} } \boldsymbol{\cdot} {\rm d}\mathbf{a} -\frac{{\rm d}}{{\rm d}t}\iiint_{V}\frac{\mathbf{S}}{c^2}\,{\rm d}V \\ &=-\oiint_{S} (-\pmb{\mathsf{T} }) \boldsymbol{\cdot} {\rm d}\mathbf{a} -\frac{{\rm d}}{{\rm d}t}\iiint_{V}\frac{\mathbf{S}}{c^2}\,{\rm d}V \end{aligned} )]
이것은 자세히 보면 포인팅의 정리와 비슷한 꼴이다. 따라서 다음을 알 수 있다.
- 첫 적분은 면을 통해 유입되거나 유출되는 운동량을 의미한다.
- 두 번째 적분은 전자기장이 자체적으로 가진 운동량을 의미한다.
따라서 전자기장이 가진 운동량의 밀도는 [math(\mathbf{S}/c^2)]이라 볼 수 있다.